skip to main content


Search for: All records

Creators/Authors contains: "Radice, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide complementary information that helps to understand the evolution of the modes. In the GCN, we note several avoided crossings as the mode frequencies evolve at early times, while the CBMP tracks the modes across the avoided crossings. We verify that the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region alternates between the core and the envelope at each avoided crossing. At later times, approximately 0.4 s after the bounce, the three classification methods present a similar description of the mode spectrum. We use our results to test universal relations for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is remarkably simple in the CBMP.

     
    more » « less
  2. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less
  3. Abstract

    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.

     
    more » « less